38 research outputs found

    On High Performance Computing in Geodesy : Applications in Global Gravity Field Determination

    Get PDF
    Autonomously working sensor platforms deliver an increasing amount of precise data sets, which are often usable in geodetic applications. Due to the volume and quality, models determined from the data can be parameterized more complex and in more detail. To derive model parameters from these observations, the solution of a high dimensional inverse data fitting problem is often required. To solve such high dimensional adjustment problems, this thesis proposes a systematical, end-to-end use of a massive parallel implementation of the geodetic data analysis, using standard concepts of massive parallel high performance computing. It is shown how these concepts can be integrated into a typical geodetic problem, which requires the solution of a high dimensional adjustment problem. Due to the proposed parallel use of the computing and memory resources of a compute cluster it is shown, how general Gauss-Markoff models become solvable, which were only solvable by means of computationally motivated simplifications and approximations before. A basic, easy-to-use framework is developed, which is able to perform all relevant operations needed to solve a typical geodetic least squares adjustment problem. It provides the interface to the standard concepts and libraries used. Examples, including different characteristics of the adjustment problem, show how the framework is used and can be adapted for specific applications. In a computational sense rigorous solutions become possible for hundreds of thousands to millions of unknown parameters, which have to be estimated from a huge number of observations. Three special problems with different characteristics, as they arise in global gravity field recovery, are chosen and massive parallel implementations of the solution processes are derived. The first application covers global gravity field determination from real data as collected by the GOCE satellite mission (comprising 440 million highly correlated observations, 80,000 parameters). Within the second application high dimensional global gravity field models are estimated from the combination of complementary data sets via the assembly and solution of full normal equations (scenarios with 520,000 parameters, 2 TB normal equations). The third application solves a comparable problem, but uses an iterative least squares solver, allowing for a parameter space of even higher dimension (now considering scenarios with two million parameters). This thesis forms the basis for a flexible massive parallel software package, which is extendable according to further current and future research topics studied in the department. Within this thesis, the main focus lies on the computational aspects.Autonom arbeitende Sensorplattformen liefern prĂ€zise geodĂ€tisch nutzbare DatensĂ€tze in grĂ¶ĂŸer werdendem Umfang. Deren Menge und QualitĂ€t fĂŒhrt dazu, dass Modelle die aus den Beobachtungen abgeleitet werden, immer komplexer und detailreicher angesetzt werden können. Zur Bestimmung von Modellparametern aus den Beobachtungen gilt es oftmals, ein hochdimensionales inverses Problem im Sinne der Ausgleichungsrechnung zu lösen. Innerhalb dieser Arbeit soll ein Beitrag dazu geleistet werden, Methoden und Konzepte aus dem Hochleistungsrechnen in der geodĂ€tischen Datenanalyse strukturiert, durchgĂ€ngig und konsequent zu verwenden. Diese Arbeit zeigt, wie sich diese nutzen lassen, um geodĂ€tische Fragestellungen, die ein hochdimensionales Ausgleichungsproblem beinhalten, zu lösen. Durch die gemeinsame Nutzung der Rechen- und Speicherressourcen eines massiv parallelen Rechenclusters werden Gauss-Markoff Modelle lösbar, die ohne den Einsatz solcher Techniken vorher höchstens mit massiven Approximationen und Vereinfachungen lösbar waren. Ein entwickeltes GrundgerĂŒst stellt die Schnittstelle zu den massiv parallelen Standards dar, die im Rahmen einer numerischen Lösung von typischen Ausgleichungsaufgaben benötigt werden. Konkrete Anwendungen mit unterschiedlichen Charakteristiken zeigen das detaillierte Vorgehen um das GrundgerĂŒst zu verwenden und zu spezifizieren. Rechentechnisch strenge Lösungen sind so fĂŒr Hunderttausende bis Millionen von unbekannten Parametern möglich, die aus einer Vielzahl von Beobachtungen geschĂ€tzt werden. Drei spezielle Anwendungen aus dem Bereich der globalen Bestimmung des Erdschwerefeldes werden vorgestellt und die Implementierungen fĂŒr einen massiv parallelen Hochleistungsrechner abgeleitet. Die erste Anwendung beinhaltet die Bestimmung von Schwerefeldmodellen aus realen Beobachtungen der Satellitenmission GOCE (welche 440 Millionen korrelierte Beobachtungen umfasst, 80,000 Parameter). In der zweite Anwendung werden globale hochdimensionale Schwerefelder aus komplementĂ€ren Daten ĂŒber das Aufstellen und Lösen von vollen Normalgleichungen geschĂ€tzt (basierend auf Szenarien mit 520,000 Parametern, 2 TB Normalgleichungen). Die dritte Anwendung löst dasselbe Problem, jedoch ĂŒber einen iterativen Löser, wodurch der Parameterraum noch einmal deutlich höher dimensional sein kann (betrachtet werden nun Szenarien mit 2 Millionen Parametern). Die Arbeit bildet die Grundlage fĂŒr ein massiv paralleles Softwarepaket, welches schrittweise um Spezialisierungen, abhĂ€ngig von aktuellen Forschungsprojekten in der Arbeitsgruppe, erweitert werden wird. Innerhalb dieser Arbeit liegt der Fokus rein auf den rechentechnischen Aspekten

    On high performance computing in geodesy : applications in global gravity field determination

    Get PDF
    Autonomously working sensor platforms deliver an increasing amount of precise data sets, which are often usable in geodetic applications. Due to the volume and quality, models determined from the data can be parameterized more complex and in more detail. To derive model parameters from these observations, the solution of a high dimensional inverse data fitting problem is often required. To solve such high dimensional adjustment problems, this thesis proposes a systematical, end-to-end use of a massive parallel implementation of the geodetic data analysis, using standard concepts of massive parallel high performance computing. It is shown how these concepts can be integrated into a typical geodetic problem, which requires the solution of a high dimensional adjustment problem. Due to the proposed parallel use of the computing and memory resources of a compute cluster it is shown, how general Gauss-Markoff models become solvable, which were only solvable by means of computationally motivated simplifications and approximations before. A basic, easy-to-use framework is developed, which is able to perform all relevant operations needed to solve a typical geodetic least squares adjustment problem. It provides the interface to the standard concepts and libraries used. Examples, including different characteristics of the adjustment problem, show how the framework is used and can be adapted for specific applications. In a computational sense rigorous solutions become possible for hundreds of thousands to millions of unknown parameters, which have to be estimated from a huge number of observations. Three special problems with different characteristics, as they arise in global gravity field recovery, are chosen and massive parallel implementations of the solution processes are derived. The first application covers global gravity field determination from real data as collected by the GOCE satellite mission (comprising 440 million highly correlated observations, 80,000 parameters). Within the second application high dimensional global gravity field models are estimated from the combination of complementary data sets via the assembly and solution of full normal equations (scenarios with 520,000 parameters, 2 TB normal equations). The third application solves a comparable problem, but uses an iterative least squares solver, allowing for a parameter space of even higher dimension (now considering scenarios with two million parameters). This thesis forms the basis for a flexible massive parallel software package, which is extendable according to further current and future research topics studied in the department. Within this thesis, the main focus lies on the computational aspects.Autonom arbeitende Sensorplattformen liefern prĂ€zise geodĂ€tisch nutzbare DatensĂ€tze in grĂ¶ĂŸer werdendem Umfang. Deren Menge und QualitĂ€t fĂŒhrt dazu, dass Modelle die aus den Beobachtungen abgeleitet werden, immer komplexer und detailreicher angesetzt werden können. Zur Bestimmung von Modellparametern aus den Beobachtungen gilt es oftmals, ein hochdimensionales inverses Problem im Sinne der Ausgleichungsrechnung zu lösen. Innerhalb dieser Arbeit soll ein Beitrag dazu geleistet werden, Methoden und Konzepte aus dem Hochleistungsrechnen in der geodĂ€tischen Datenanalyse strukturiert, durchgĂ€ngig und konsequent zu verwenden. Diese Arbeit zeigt, wie sich diese nutzen lassen, um geodĂ€tische Fragestellungen, die ein hochdimensionales Ausgleichungsproblem beinhalten, zu lösen. Durch die gemeinsame Nutzung der Rechen- und Speicherressourcen eines massiv parallelen Rechenclusters werden Gauss-Markoff Modelle lösbar, die ohne den Einsatz solcher Techniken vorher höchstens mit massiven Approximationen und Vereinfachungen lösbar waren. Ein entwickeltes GrundgerĂŒst stellt die Schnittstelle zu den massiv parallelen Standards dar, die im Rahmen einer numerischen Lösung von typischen Ausgleichungsaufgaben benötigt werden. Konkrete Anwendungen mit unterschiedlichen Charakteristiken zeigen das detaillierte Vorgehen um das GrundgerĂŒst zu verwenden und zu spezifizieren. Rechentechnisch strenge Lösungen sind so fĂŒr Hunderttausende bis Millionen von unbekannten Parametern möglich, die aus einer Vielzahl von Beobachtungen geschĂ€tzt werden. Drei spezielle Anwendungen aus dem Bereich der globalen Bestimmung des Erdschwerefeldes werden vorgestellt und die Implementierungen fĂŒr einen massiv parallelen Hochleistungsrechner abgeleitet. Die erste Anwendung beinhaltet die Bestimmung von Schwerefeldmodellen aus realen Beobachtungen der Satellitenmission GOCE (welche 440 Millionen korrelierte Beobachtungen umfasst, 80,000 Parameter). In der zweite Anwendung werden globale hochdimensionale Schwerefelder aus komplementĂ€ren Daten ĂŒber das Aufstellen und Lösen von vollen Normalgleichungen geschĂ€tzt (basierend auf Szenarien mit 520,000 Parametern, 2 TB Normalgleichungen). Die dritte Anwendung löst dasselbe Problem, jedoch ĂŒber einen iterativen Löser, wodurch der Parameterraum noch einmal deutlich höher dimensional sein kann (betrachtet werden nun Szenarien mit 2 Millionen Parametern). Die Arbeit bildet die Grundlage fĂŒr ein massiv paralleles Softwarepaket, welches schrittweise um Spezialisierungen, abhĂ€ngig von aktuellen Forschungsprojekten in der Arbeitsgruppe, erweitert werden wird. Innerhalb dieser Arbeit liegt der Fokus rein auf den rechentechnischen Aspekten

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment

    An Improved Model of the Earth’s Static Gravity Field Solely Derived from Reprocessed GOCE Data

    No full text
    After it was found that the gravity gradients observed by the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite could be significantly improved by an advanced calibration, a reprocessing project for the entire mission data set was initiated by ESA and performed by the GOCE High-level processing facility (GOCE HPF). One part of the activity was delivering the gravity field solutions, where the improved level 1b and level 2 data serve as an input for global gravity field recovery. One well-established approach for the analysis of GOCE observations is the so-called time-wise approach. Basic characteristics of the GOCE time-wise solutions is that only GOCE observations are included to remain independent of any other gravity field observables and that emphasis is put on the stochastic modeling of the observations’ uncertainties. As a consequence, the time-wise solutions provide a GOCE-only model and a realistic uncertainty description of the model in terms of the full covariance matrix of the model coefficients. Within this contribution, we review the GOCE time-wise approach and discuss the impact of the improved data and modeling applied in the computation of the new GO_CONS_EGM_TIM_RL06 solution. The model reflects the Earth’s static gravity field as observed by the GOCE satellite during its operation. As nearly all global gravity field models, it is represented as a spherical harmonic expansion, with maximum degree 300. The characteristics of the model and the contributing data are presented, and the internal consistency is demonstrated. The updated solution nicely meets the official GOCE mission requirements with a global mean accuracy of about 2 cm in terms of geoid height and 0.6 mGal in terms of gravity anomalies at ESA’s target spatial resolution of 100 km. Compared to its RL05 predecessor, three kinds of improvements are shown, i.e., (1) the mean global accuracy increases by 10–25%, (2) a more realistic uncertainty description and (3) a local reduction of systematic errors in the order of centimeters.European Space Agency http://dx.doi.org/10.13039/501100000844Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Gauss Centre for Supercomputing e.V./John von Neumann Institute for ComputingProjekt DEALhttps://goce-ds.eo.esa.int/oads/access

    An Improved Model of the Earth’s Static Gravity Field Solely Derived from Reprocessed GOCE Data

    No full text
    <jats:title>Abstract</jats:title><jats:p>After it was found that the gravity gradients observed by the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite could be significantly improved by an advanced calibration, a reprocessing project for the entire mission data set was initiated by ESA and performed by the GOCE High-level processing facility (GOCE HPF). One part of the activity was delivering the gravity field solutions, where the improved level 1b and level 2 data serve as an input for global gravity field recovery. One well-established approach for the analysis of GOCE observations is the so-called time-wise approach. Basic characteristics of the GOCE time-wise solutions is that only GOCE observations are included to remain independent of any other gravity field observables and that emphasis is put on the stochastic modeling of the observations’ uncertainties. As a consequence, the time-wise solutions provide a GOCE-only model and a realistic uncertainty description of the model in terms of the full covariance matrix of the model coefficients. Within this contribution, we review the GOCE time-wise approach and discuss the impact of the improved data and modeling applied in the computation of the new GO_CONS_EGM_TIM_RL06 solution. The model reflects the Earth’s static gravity field as observed by the GOCE satellite during its operation. As nearly all global gravity field models, it is represented as a spherical harmonic expansion, with maximum degree 300. The characteristics of the model and the contributing data are presented, and the internal consistency is demonstrated. The updated solution nicely meets the official GOCE mission requirements with a global mean accuracy of about 2 cm in terms of geoid height and 0.6 mGal in terms of gravity anomalies at ESA’s target spatial resolution of 100 km. Compared to its RL05 predecessor, three kinds of improvements are shown, i.e., (1) the mean global accuracy increases by 10–25%, (2) a more realistic uncertainty description and (3) a local reduction of systematic errors in the order of centimeters.</jats:p&gt
    corecore